1-6-S.mobi Can you see the Microbes?
Uncover the World of Microbiomes!! 3K to 20K Reads for as low as $60

 

 

 

 

 

 

 

Association of household siblings with nasal and fecal microbiota in infants.

Hasegawa K1, Linnemann RW2, Mansbach JM3, Ajami NJ4, Espinola JA5, Fiechtner LG6, Petrosino JF4, Camargo CA Jr5.

Author information

Abstract

BACKGROUND:

Early-life exposure to older siblings is associated with a lower risk of asthma. To date, no study has addressed the impact of having siblings on both the airway and fecal microbiota during infancy. We aimed to profile the nasal airway and fecal microbiota in infants, and to examine the association between having siblings and microbiota profiles.

METHODS:

We conducted a cross-sectional study of 105 healthy infants (aged <1 year). By applying 16S rRNA gene sequencing and an unbiased clustering approach to the nasal airway and fecal samples, we identified microbiota profiles and then determined the association between having siblings and microbiome profiles.

RESULTS:

Overall, the median age was 3.4 months (IQR, 2.0-4.7 months); 43% had siblings in the household. Unbiased clustering of nasal airway microbiota identified three profiles: Moraxella-dominant (43%), Corynebacterium/Dolosigranulum-dominant (36%), and mixed (21%). Infants with siblings were more likely to have Moraxella-dominant profile than Corynebacterium/Dolosigranulum-dominant profile (76% vs. 18%) while those without siblings had the opposite pattern (18% vs. 50%) (multivariable-adjusted P<0.001). Fecal microbiota consisted of three profiles: Bifidobacterium-dominant (39%), Escherichia-dominant (31%), and Enterobacter-dominant (30%). Infants with siblings were more likely to have Bifidobacterium-dominant profile than Escherichia-dominant profile (49% vs. 24%) while those without siblings had the opposite pattern (32% vs. 37%) (multivariable-adjusted P=0.04).

CONCLUSIONS:

In this cross-sectional study, we found that infants with siblings were more likely to have Moraxella-dominant nasal microbiota profile and Bifidobacterium-dominant fecal microbiota profile. Our findings should facilitate further investigation of the interplay between early-life environmental exposures, the microbiome, and childhood asthma. This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

KEYWORDS:

airway microbiota; asthma; fecal microbiota; infants; sibling

PMID: 27638139 DOI: 10.1111/ped.13168

[PubMed - as supplied by publisher]

Similar articles

Icon for Wiley

Select item 27637802

 

 

22.

J Ethnopharmacol. 2016 Sep 13. pii: S0378-8741(16)30818-2. doi: 10.1016/j.jep.2016.09.027. [Epub ahead of print]

Qualitatively and Quantitatively Investigating the Regulation of Intestinal Microbiota on the Metabolism of Panax notoginseng saponins.

Xiao J1, Chen H1, Kang D1, Shao Y1, Shen B1, Li X1, Yin X1, Zhu Z1, Li H1, Rao T1, Xie L1, Wang G2, Liang Y2.

Author information

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE:

Intestinal microflora plays crucial roles in modulating pharmacokinetic characteristics and pharmacological actions of active ingredients in traditional Chinese medicines (TCMs). However, the exact impact of altered intestinal microflora affecting the biotransformation of TCMs remains poorly understood.

AIMS OF THE STUDY:

This study aimed to reveal the specific enterobacteria which dominate the metabolism of panax notoginseng saponins (PNSs) via exploring the relationship between bacterial community structures and the metabolic profiles of PNSs.

MATERIALS AND METHODS:

2, 4, 6-Trinitrobenzenesulphonic acid (TNBS)-challenged and pseudo germ-free (pseudo GF) rats, which prepared by treating TNBS and antibiotic cocktail, respectively, were employed to investigate the influence of intestinal microflora on the PNS metabolic profiles. Firstly, the bacterial community structures of the conventional, TNBS-challenged and pseudo GF rat intestinal microflora were compared via 16S rDNA amplicon sequencing technique. Then, the biotransformation of protopanaxadiol-type PNSs (ginsenoside Rb1, Rb2 and Rd), protopanaxatriol-type PNSs (ginsenoside Re, Rf, Rg1 and notoginsenoside R1) and Panax notoginseng extract (PNE) in conventional, TNBS-challenged and pseudo GF rat intestinal microbiota was systematically studied from qualitative and quantitative angles based on LC-triple-TOF/MS system. Besides, glycosidases (β-glucosidase and β-xylosidase), predominant enzymes responsible for the deglycosylation of PNSs, were measured by the glycosidases assay kits.

RESULTS:

Significant differences in the bacterial community structure on phylum, class, order, family, and genera levels were observed among the conventional, TNBS-challenged and pseudo GF rats. Most of the metabolites in TNBS-challenged rat intestinal microflora were identified as the deglycosylation products, and had slightly lower exposure levels than those in the conventional rats. In the pseudo GF group, the peak area of metabolites formed by loss of glucose, xylose and rhamnose was significantly lower than that in the conventional group. Importantly, the exposure levels of the deglycosylated metabolites were found have a high correlation with the alteration of glycosidase activities and proteobacteria population. Several other metabolites, which formed by oxidation, dehydrogenation, demethylation, etc, had higher relative exposure in pseudo GF group, which implicated that the up-regulation of Bacteroidetes could enhance the activities of some redox enzymes in intestinal microbiota.

CONCLUSION:

The metabolism of PNSs was greatly influenced by intestinal microflora. Proteobacteria may affect the deglycosylated metabolism of PNSs via regulating the activities of glycosidases. Besides, up-regulation of Bacteroidetes was likely to promote the redox metabolism of PNSs via improving the activities of redox metabolic enzymes in intestinal microflora.

Copyright © 2016. Published by Elsevier Ireland Ltd.

KEYWORDS:

Deglycosylation; Glycosidase; Intestinal microflora; Panax notoginseng extract; Panax notoginseng saponin

PMID: 27637802 DOI: 10.1016/j.jep.2016.09.027

[PubMed - as supplied by publisher]

Similar articles

Icon for Elsevier Science

Select item 27636701

 

 

23.

Eur J Contracept Reprod Health Care. 2016 Sep 16:1-7. [Epub ahead of print]

Neither vaginal nor buccal administration of 800 μg misoprostol alters mucosal and systemic immune activation or the cervicovaginal microbiome: a pilot study.

Kalams SA1, Rogers LM1, Smith RM1, Barnett L1, Crumbo K1, Sumner S1, Prashad N1, Rybczyk K1, Milne G2, Dowd SE3, Chong E4, Winikoff B4, Aronoff DM1.

Author information

Abstract

OBJECTIVES:

The aim of the study was to assess the extent to which misoprostol alters mucosal or systemic immune responses following either buccal or vaginal administration.

METHODS:

This was a prospective, crossover pilot study of 15 healthy, reproductive-age women. Women first received 800 μg misoprostol either via buccal or vaginal administration and were crossed over 1 month later to receive the drug via the other route. Cervicovaginal lavage samples, cervical Cytobrush samples, cervicovaginal swabs, urine and blood were obtained immediately prior to drug administration and the following day. Parameters assessed included urine and cervicovaginal misoprostol levels, whole blood cytokine responses (by ELISA) to immune stimulation with lipopolysaccharide, peripheral blood and cervical lymphocyte phenotyping by flow cytometry, cervicovaginal antimicrobial peptide measurement by ELISA and vaginal microbial ecology assessment by 16S rRNA sequencing.

RESULTS:

Neither buccal nor vaginal misoprostol significantly altered local or systemic immune and microbiological parameters.

CONCLUSION:

In this pilot study, we did not observe significant alteration of mucosal or systemic immunology or vaginal microbial ecology 1 day after drug administration following either the buccal or vaginal route.

KEYWORDS:

Abortion; microbial ecology; mucosal immunology; prostaglandins

PMID: 27636701 DOI: 10.1080/13625187.2016.1229765

[PubMed - as supplied by publisher]

Similar articles

Icon for Taylor & Francis

Select item 27635335

 

 

24.

PeerJ. 2016 Aug 24;4:e2367. doi: 10.7717/peerj.2367. eCollection 2016.

Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species.

Laforest-Lapointe I1, Messier C2, Kembel SW1.

Author information

Abstract

BACKGROUND:

The diversity and composition of the microbial community of tree leaves (the phyllosphere) varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling techniques employed for phyllosphere studies include picking leaves from one canopy location to mixing randomly selected leaves from throughout the canopy. In this context, our goal was to characterize the relative importance of intra-individual variation in phyllosphere communities across multiple species, and compare this variation to inter-individual and interspecific variation of phyllosphere epiphytic bacterial communities in a natural temperate forest in Quebec, Canada.

METHODS:

We targeted five dominant temperate forest tree species including angiosperms and gymnosperms: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea and Picea glauca. For one randomly selected tree of each species, we sampled microbial communities at six distinct canopy locations: bottom-canopy (1-2 m height), the four cardinal points of mid-canopy (2-4 m height), and the top-canopy (4-6 m height). We also collected bottom-canopy leaves from five additional trees from each species.

RESULTS:

Based on an analysis of bacterial community structure measured via Illumina sequencing of the bacterial 16S gene, we demonstrate that 65% of the intra-individual variation in leaf bacterial community structure could be attributed to the effect of inter-individual and inter-specific differences while the effect of canopy location was not significant. In comparison, host species identity explains 47% of inter-individual and inter-specific variation in leaf bacterial community structure followed by individual identity (32%) and canopy location (6%).

DISCUSSION:

Our results suggest that individual samples from consistent positions within the tree canopy from multiple individuals per species can be used to accurately quantify variation in phyllosphere bacterial community structure. However, the considerable amount of intra-individual variation within a tree canopy ask for a better understanding of how changes in leaf characteristics and local abiotic conditions drive spatial variation in the phyllosphere microbiome.

KEYWORDS:

Bioindicator; Inter-individual variation; Interspecific variation; Intra-individual variation; Microbiome; Phyllosphere; Plant-bacteria interaction; Temperate forest

 

What the Naked Eye Can't See!!